
Analyzing Latent Spaces in Autoencoders of Varied Bottleneck Size

Andre Ye

April 2021

Contents

1 Introduction 2

2 Attaining Data 3
2.1 Process . 3
2.2 Results . 3
2.3 Specific Formulation of Inquiry . 5

3 Visual Analysis of the Latent Space 7

4 Analyzing Spread of the Latent Space 7
4.1 Spread Without Class Distinction . 10
4.2 Spread With Class Distinction . 10

5 Analyzing Distance Between Centroids 12

6 Summary of Findings 14

7 Further Inquiry 15

8 Code Reproduction Links 15

1

Figure 1.1: A simple autoencoder structure with 15-dimensional input and output and a 4-dimensional bottleneck.

1 Introduction

Neural networks are powerful tools for learning complex forms of data in the modern age. The entire field of
deep learning has surged in popularity. However, in the words of a wise person on the Internet, “neural networks
are matrix multiplications no one understands.” Indeed, much of this is true; despite the large predictive power of
neural networks, the actual internal processes of how neural networks learn are difficult to understand. As such, it
is important not only to analyze the outputs of the model – which have traditionally been the dominant focus of
research – but intermediate layers. One can analyze the neural network’s intermediate representations of data to
more broadly investigate the learning phenomenon and representation properties of neural networks.

Autoencoders are neural networks structures in which the input is identical to the output. However, the network
architecture is built with a “bottleneck” in the middle; that is, in the feed-forward operation, the input is compressed,
or encoded, into a smaller representation. This representation is then decoded into the output, which in the case of
optimal performance is identical to the input. Because the bottleneck is smaller than the input size, the network
must find an efficient representation for all inputs such that it can decode the representation.

• Encoder. Represents the first half of the autoencoder that encodes the input in an efficient representation.
Restated, it maps the input to a coordinate in the latent space of the bottleneck.

• Bottleneck. The bottleneck is n neurons wide; n thus indicates the dimensionality of the latent space.

• Decoder. Represents the second half of the autoencoder that decodes the efficient representation into the
output (which should be identical to the input).

Because autoencoders are unsupervised in that it can be used on a dataset without labels, they are versatile in
being able to find the structure of any dataset. Given the task of exploring the representation capabilities of neural
networks, the autoencoder’s bottleneck as the intermediate network representation of data is a concrete method of
accomplishing the abstract goal of viewing the “thinking processes” of neural networks.

This paper will utilize statistical tools to analyze the latent space of an autoencoder for different dimensionalities
of the latent space. That is, as the width of the bottleneck – and hence the “difficulty” of the efficient representation,
in that smaller latent spaces are more difficult to store information in – varies, how do encoded representations of
the dataset differ? Section 2: Attaining Data will provide a more detailed and specific formulation of this paper’s
inquiry.

2

Figure 2.1: The structure of the encoder for the simple autoencoder used for this paper, assuming a bottleneck
size of 20 neurons. The decoder is symmetrical to the encoder, but convolutions are replaced with transposed
convolutions and max pooling layers are replaced with upsampling layers.

2 Attaining Data

2.1 Process

This paper will use the MNIST dataset, which consists of 60,000 28 by 28 pixel grayscale images of handwritten
digits, from 0 to 9. As such, there are 10 classes, each with 6,000 images. Since its initial release in 1999, the
MNIST dataset has been a standard benchmark for new models and methods. As such, it serves as a good dataset
to analyze the latent space of autoencoders.

To collect the data, the following steps were taken for the bottleneck sizes: 1, 2, 3, 4, 5, 10, 20, 50, 100, and 200
neurons.

1. Create an autoencoder structure with input 28 by 28 by 1 and output 28 by 28 by 1, with a bottleneck of n
neurons. Since the bottleneck is one-dimensional whereas convolutions are two-dimensional, the bottleneck
will be flanked on either side by a flatten and reshape layer. The encoder architecture is diagrammed in Figure
2.1.

2. Train an autoencoder to reproduce the input image on training data. The labels are not used. Use binary
crossentropy loss and train for a maximum of 200 epochs. If the loss does not improve for 3 consecutive
epochs, stop training.

3. Detach the encoder from the autoencoder. Get predictions from the encoder on the test data. Since the
encoder takes an input and maps it to the latent space, the result is an array of latent-space coordinates for
each input in the test data.

4. The encoder is run on the test data and not the training data to evaluate the autoencoder’s generalized
mapping, rather than the specific learned ones, which may have been overfit to and are hence not representative
of the model’s intermediate representation. The latent-space coordinates of the test data for each autoencoder
are stored.

5. Run a t-Stochastic Neighbors Embedding dimensionality reduction algorithm on the latent-space coordinates
and reduce the latent space for each autoencoder into two dimensions.

Although the process to collect the latent space data disregards labels, labels will be included in the analysis of
the acquired data; each coordinates in the latent space is associated with a label indicating what digit the original
sample input was. As such, we can analyze how clusters of coordinates in the latent space for different classes
change.

2.2 Results

The models took 5 hours in total to train on total on GPU. Visual demonstrations of the representation ca-
pabilities are displayed in Figures 2.2-2.11. The top row of images represents the input to the autoencoder, and
the bottom row represents the autoencoder’s output – their attempt at recreating the input from a representation
size of n dimensions. The detailed results for training loss (binary crossentropy), training mean average error, and
epochs needed for training are displayed in the table on page 5; the loss is visualized in Figures 2.12 and 2.13.

3

Figure 2.2: Bottleneck size of 1 neuron. Figure 2.3: Bottleneck size of 2 neurons.

Figure 2.4: Bottleneck size of 3 neurons. Figure 2.5: Bottleneck size of 4 neurons.

Figure 2.6: Bottleneck size of 5 neurons. Figure 2.7: Bottleneck size of 10 neurons.

Figure 2.8: Bottleneck size of 20 neurons. Figure 2.9: Bottleneck size of 50 neurons.

Figure 2.10: Bottleneck size of 100 neurons. Figure 2.11: Bottleneck size of 200 neurons.

4

An analysis of the visual representations of autoencoder capabilities is fruitful. The autoencoder with one neuron
yields an output resembling the digit “9” when given the digits “7” and “4”, which demonstrates an interesting
similarity in structure that the model took advantage of.

Yet, the autoencoder is able to reproduce the inputs “1” and “0” from a representation size of one neuron well,
capturing the slight slant of the “1”. Interestingly, many features of the “0” in the input, like the knob on the top
and its relatively straight orientation, have been discarded in favor of a general “0” shape. This suggests that the
model has learned to perform some level of clustering by digit without actually receiving labels for that digit.

The autoencoder with two neurons predicts an all black output; analyzing its short training history, it is likely
that it was initialized poorly or something went wrong in one of its initial steps.

Bottleneck sizes of three through 200 yield progressively better reconstructions of the inputs. We see two
simultaneous trends emerging: confidence and detail. As the bottleneck size increases, the autoencoder becomes
more confident in its reconstructions. Autoencoders with bottleneck sizes of three, four, five, and even ten neurons
suffer from varying degrees of lack of confidence, representing by gray fuzziness. In autoencoders with larger
autoencoder bottleneck sizes, the outlines and filling of the reconstructed shapes are more defined, indicating that
the model is more confident in its reconstruction and representation capabilities. Meanwhile, as bottleneck size
grows, the reconstruction can increasingly capture more detail. For instance, one can observe the transitioning
appearance of a clear knob like the one in the input for the digit zero from 10-neuron to 50-neuron bottlenecks.
Moreover, the autoencoder no longer (at least visibly) “mushes together” digits of similar structures, as observed
with the digits “7”, “4”, and “9” in the autoencoder with one neuron. This suggests something intriguing about
a change in the representation space of the autoencoder: does a high-dimensional latent space still map inputs
belonging to the digit classes “4” and “9”, for example, to similarly close regions? How is the autoencoder with a
large quantity of bottleneck neurons able to efficiently represent details – does it still learn the ability to perform a
clustering by digits, or is this not required given the size of the latent space?

Bottleneck Size Loss Training MAE Epochs Needed

1 0.2139 0.1172 70
2 0.3873 0.2414 6
3 0.1708 0.0875 116
4 0.1564 0.0779 185
5 0.1478 0.0718 159
10 0.1234 0.0545 192
20 0.0875 0.0297 200
50 0.0766 0.0219 172
100 0.0711 0.0173 200
200 0.0680 0.0147 200

2.3 Specific Formulation of Inquiry

After attaining the data, we can now formulate a more specific path of inquiry. In this paper, we will attempt
to find similarities and differences across the representation capabilities of autoencoders of bottleneck sizes 1, 2, 3,
4, 5, 10, 20, 50, 100, and 200 neurons in compressing 28 by 28 pixel gray-scale images of handwritten digits. The
visual and numerical demonstrations of autoencoder performance suggest two groups of questions:

• How spread out are the points in the latent spaces of autoencoders across bottleneck size? How spread out
are the latent representations for each digit class for each autoencoder?

• How far apart are the centroids for clusters of latent representations for each digit class for each autoencoder?
As the number of neurons in the bottleneck increases, does the autoencoder get “better” at separating clusters
of different classes?

5

Figure 2.12: Loss over epochs for smaller bottleneck sizes.

Figure 2.13: Loss over epochs for larger bottleneck sizes.

6

3 Visual Analysis of the Latent Space

Before engaging in statistical analysis of the latent space, we should begin by performing a visual analysis in two
dimensions. Given that the latent spaces are of different dimensionality, it can be difficult to roughly confirm if the
statistics we derive seem to be reasonable or not. By visually inspecting the latent space of different autoencoders,
we can roughly approximate relationships and expect to find more solidified versions of them in statistical analysis.

Using the t-Stochastic Neighbors Embedding (t-SNE) algorithm, which preserves local structure over global
structure to map complex manifolds into lower dimensions effectively, we can generate a two-dimensional repre-
sentation of the latent space of each autoencoder. t-SNE is unsupervised, meaning it does not attempt to project
data into a lower space to maximize distances between classes in a way that Linear Discriminant Analysis does.
Therefore in figures 3.1 to 3.6 in which bottleneck sizes of 3 to 50 neurons are displayed, although individual points
are highlighted by which class they belong to, the t-SNE algorithm did not consider labels. Hence, any separation
observed by class is a representation of the autoencoder, not a feature of the t-SNE visualization process. Note,
however, that t-SNE is a stochastic process, meaning that the orientation and specific layout of entities may not be
the same; while analysis should not consider the specific orientation of the diagrams, it can consider the shape and
relationship between clusters.

Visualizing the latent spaces of the autoencoders yields very rich insights into how different bottleneck sizes force
autoencoders to find different representations of data. One of the most visible emerging features as the bottleneck
size increases is the separation between classes. Autoencoders with three and four neurons have very heavy degrees
of overlap between classes, especially between the digits “4” and “9”. This aligns with the prior visual exploration of
autoencoder capabilities. On the other hand, even with bottleneck sizes of three and four neurons, the autoencoder
can clearly separate digits like “0” and “1”, indicated by their far distance from any other class. On the other
hand, autoencoders with larger bottleneck sizes of 100 and 200 neurons have a much clearer separation of classes.
Furthermore, each of the classes becomes slightly more “cohesive” in that they are less spread out.

Analysis of the latent space will be conducted on these t-SNE reduced-dimension representations of the coor-
dinate space. There are several reasons for this choice. Firstly, because of the “Curse of Dimensionality” and the
wide range of dimensions included in our analysis of latent spaces (1 dimension to 200 dimensions), it is not wise
to compare statistical findings across the drastically different bottleneck sizes. Secondly, even if we were to use
statistical methods on different dimensional latent spaces, we would find that they would not be very informational
because of the nature of deep learning representations. It is well known that deep neural networks form represen-
tations of data on very complex manifolds, and thus performing simpler statistical calculations devised for simpler
phenomena is ill-advised. For instance, the mean of all points on a circle is its center, but none of the points lie
close to that mean. For evidence of this, view figures 3.9 and 3.10, which show a Principal Component Analysis
reduction of latent spaces. The results demonstrate that using more linear statistical methods performs poorly at
“understanding” the complex manifolds that lie in the latent spaces. However, the t-SNE algorithm is localized,
meaning that it prioritizes the preservation of local structure over that of the global structure. It is thus able
to “unravel” complex manifolds, yielding more accurate reductions of the relationships found by the autoencoder.
Thirdly, being able to visually confirm our findings in two dimensions makes our analysis less prone to potential
human errors that would not have been caught if working in un-intuitive higher dimensions. For these reasons, it
is reasonable for our analysis to carry forth using t-SNE reduced representations of the autoencoder latent space.

A consequence of this decision, though, is that we will need to exclude the one-neuron and two-neuron bottlenecks
from the analysis, since performing t-SNE on latent spaces of two dimensions and smaller is bad practice and cannot
be compared with t-SNE results from higher dimensions. The autoencoder with two neurons would have been
excluded from analysis anyway, since its training was disrupted, as demonstrated by the input/output visualization
in Figure 2.3.

4 Analyzing Spread of the Latent Space

In this section, we will analyze how the “spread” of the latent space differs by the width of the autoencoder’s
bottleneck. Traditionally, the standard of spread for one-dimensional data has been standard deviation, defined as
such:

σ =

√∑
(xi − x̄)2

N − 1

7

Figure 3.1: Bottleneck size of 3 neurons. Figure 3.2: Bottleneck size of 4 neurons.

Figure 3.3: Bottleneck size of 5 neurons. Figure 3.4: Bottleneck size of 10 neurons.

Figure 3.5: Bottleneck size of 20 neurons. Figure 3.6: Bottleneck size of 50 neurons.

8

Figure 3.7: Bottleneck size of 100 neurons. Figure 3.8: Bottleneck size of 200 neurons.

However, this does not work for two-dimensional data. Let us instead measure “spread” in a more general sense
by the average distance from a “center point”.

1

N

∑
||pi − c||

Because we have reduced the latent space into two dimensions, we will need to adapt this notion of spread for
a two-dimensional space. The center point can be defined as the average point, where c = (x̄, ȳ) for all x and y
coordinates. The distance between a particular point and the center can be calculated using Euclidean distance:

||pi − c|| =
√

(xi − x̄)2 + (yi − ȳ)2

Figure 3.9: PCA visualization of 10-neuron la-
tent space. Despite its inability to preserve
local structure, we can still see that “1”s –
a digit even the smallest-bottleneck autoen-
coders handled easily – form a distinct cluster.

Figure 3.10: PCA visualization of 200-neuron
latent space. It is worth noting that even
though PCA overlays various clusters on top of
each other, which poses problems to statistical
measures, as humans we can identify groups of
digit clusters.

9

We can thus calculate the “spread” of the two-dimensional latent space as such:

s =
1

N

∑√
(xi − x̄)2 + (yi − ȳ)2

This measure of spread will be used to analyze two contexts: firstly, the spread of the entire latent space without
distinction for which digits each point belongs to, and secondly, the spread of data points that belong to a particular
digit class. It should be noted that when the term “latent space” is used alongside spread, it refers to the t-SNE
reduced latent space in two dimensions.

4.1 Spread Without Class Distinction

When considering the spread of entire latent spaces without regard for which class each data point belongs to,
we find that there is not a significant decrease in the average distance from the mean of the entire latent space.
Nevertheless, as demonstrated in figure 4.1, there seems to be a trend of decreasing in average distance from mean
from 3 to 10 neurons, then a plateauing for larger bottleneck sizes.

Neurons Avg. Distance from Mean
3 56.627600
4 55.017513
5 55.185037

10 53.422837
20 53.471431
50 52.561381

100 53.169275
200 52.400419

Figure 4.1: There is a downwards motion early on, then a plateauing.

Interestingly, this suggests that as the number of neurons in the bottleneck increases, spaces become less spread
out and more “organized”. One can confirm this visually with the emergence of cohesive blob-like shapes to replace
more spread out and “structure-less” shapes in smaller bottleneck sizes in Figures 3.1 to 3.8. This suggests a greater
structure and efficiency in representation attained with a larger bottleneck size.

4.2 Spread With Class Distinction

This subsection will consider the spread of “class clusters” – the set of points that belong to a particular digit.
For each set of points (by autoencoder bottleneck size), the average distance from mean for 10 subsets of data points

10

were calculated, corresponding to which digit each of the subset data points fell into. The results are visualized in
Figure 4.2 and listed in numerical form in a table below.

Separating the analysis by digit echos the general observation that as bottleneck size increased, the average
distance from the mean drops suddenly, then seems to plateau. This is approximately true for each of the digits
when individually analyzed. Curiously, the spread of the digit clusters seems to encounter a slight “bump” in the
average distance from the mean as the number of neurons in the bottleneck increases. This small “bump” is a
small increase following the steep drop in average distance from man, and precedes a continued dropping and then
a plateau. This can be tracked by analyzing the average distance from means listed in the table. For instance, the
spread of points in the digit 8 decreases as the number of neurons in the bottleneck increases from 22.51 to 18.25. At
20 neurons, it jumps to 20.34, then continues decreasing to 17.10, then plateaus at around 15.5. Although in terms
of magnitude this small bump may not seem significant, it appears to varying degrees in every single digit except
for the digit 6, which decreases steadily, and the digit 2, which curiously increases in its spread as the number of
neurons in the bottleneck increases.

Figure 4.2: Connecting lines drawn to assist visual exploration, but do not imply the values of intermediate inputs.

Digit 3 neurons 4 neurons 5 neurons 10 neurons 20 neurons 50 neurons 100 neurons 200 neurons
0 18.68 15.36 15.25 15.46 13.68 13.48 13.53 13.88
1 26.86 19.31 17.74 16.35 16.97 16.01 18.16 16.55
2 17.96 17.57 18.08 18.16 16.84 16.78 17.95 19.33
3 25.65 18.60 17.33 17.03 17.52 14.26 15.54 16.17
4 31.53 22.98 22.67 16.49 19.55 16.33 17.58 16.57
5 40.51 18.51 20.82 19.34 17.03 17.15 15.56 16.40
6 18.42 17.00 16.05 14.47 13.77 13.24 13.71 13.83
7 22.25 20.42 20.70 19.63 18.13 15.81 16.20 17.39
8 22.51 18.93 18.47 18.25 20.34 17.10 14.90 16.36
9 27.57 23.18 23.43 16.33 18.11 18.33 19.30 18.86

Broadly, this trend is reminiscent of a deep learning phenomenon known as deep double descent, as visualized in
Figure 4.3. In classical statistics, the bias-variance tradeoff suggests that models with too much bias underfit to the
data (i.e. do not have the predictive power to model the data) and models with too much variance overfit to the
data (i.e. have so much predictive power that it memorizes the data without learning underlying trends from it).
Somewhere in between a high-bias and high-variance model is a model that has the capability to model the data,
but is not complex enough to overfit to it. Deep learning has somewhat subverted this notion, though, as massively
overparametrized neural networks have shown incredible performance on training data and test data. The Deep

11

Figure 4.3: An illustration of deep double descent from OpenAI.

Double Descent phenomenon is a theoretically and empirically proven merging of classical statistics and modern
deep learning paradigms on the relationship between the number of parameters in a model and its performance on
test data. Ultimately, it produces something like a “W” without its right “/”.

This visualization is similar to what has been demonstrated with spread over the number of neurons in the
bottleneck. As has been explored in Section 4.1, it is reasonable to interpret the spread of a neural network’s latent
space as how efficient and confident its representations of inputs are. As such, even though autoencoders operate in
an unsupervised setting, the spread of the encoder’s representation of each digit roughly measures how well it would
have performed at a task like digit classification in a supervised setting. Thus, it seems that these findings may
have served as further demonstration of the existence of the deep double descent phenomenon in an unsupervised
setting.

5 Analyzing Distance Between Centroids

Spread has given us one measure of how “cohesively” and efficiently the autoencoder is able to represent different
digits. Yet, it is a measure of intercluster (cluster referring to a cluster of points belonging to the same digit class)
efficiency; that is, how well the encoder groups inputs of the same digits together. As is common in machine learning
research, the other component is intracluster efficiency, or how well the encoder separates data points of different
digit classes.

While there are many measures of intercluster separation, one of the simplest is the distance between the
centroids (means) of each cluster. This produces 9 + 8 + · · ·+ 2 + 1 = 45 different distances between each of the 10
centroids. We can average these distances to find the average distance between digit centroids, which serves as a
measure of how well the encoder separates inputs of different classes.

Interestingly, we find that the distribution of the distances between each of the clusters is roughly normally
distributed. A sample of distributions are displayed in Figures 5.1 to 5.4, which show a histogram with a kernel
density estimate. This suggests that the mean will be an appropriate measure for the distances between centroids.

Figure 5.1: Bottleneck size of 3 neurons. Figure 5.2: Bottleneck size of 20 neurons.

12

https://openai.com/blog/deep-double-descent/

Figure 5.3: Bottleneck size of 50 neurons. Figure 5.4: Bottleneck size of 200 neurons.

The mean of the distances between digit centroids for different bottleneck sizes are visualized in figure 5.5 and
presented in numerical form in the table below. A visual inspection suggests that there is a similar deep double
descent relationship here, in which the means of distances between clusters has the broader trend of decreasing.
However, the average distance between digit centroids of 71.3254 for a 3-neuron autoencoder seems to disrupt this
pattern.

Figure 5.5: A relationship reminiscent of the deep double descent.

The Pearson correlation coefficient between the size of the bottleneck and the mean distance between centroids
is −0.3355, suggesting a somewhat decreasing trend.

Neurons Avg. Distance Between Digit Centroids
3 71.325413
4 74.791455
5 74.387227

10 73.585547
20 72.639914
50 73.149701

100 73.349573
200 72.163886

This is an unexpected result; one would have expected the distance between centroids to have increased given
that the autoencoder is “better” at separating clusters of different digit classes. Moreover, it resembles the deep
double descent curve, which suggests that the metric of mean distance between centroids may not be good for
measuring model “understanding”. The results likely suffer from lack of data; we would likely arrive at more
conclusive results if we had generated more data for different bottleneck sizes.

It also seems natural given the roughly normal distribution of distances to analyze the standard deviation of
distances between centroids. These are visualized in Figure 5.6 and presented numerically in the table below.
The standard deviation of the distances between the centroids seems more conclusively to be decreasing. The
Pearson correlation coefficient between the standard deviation of distances between clusters and the bottleneck size
is −0.7222, suggesting a strong negatively correlated relationship.

13

Figure 5.6: The standard deviation of distances between centroids seems more clearly to be decreasing.

Neurons Standard Deviation of Distance Between Digit Centroids
3 32.164193
4 28.335293
5 28.589024

10 29.079061
20 27.547002
50 27.822664

100 27.236940
200 27.184293

This means that the distribution of distances between clusters across bottleneck size quite decidedly becomes
less wide as the number of neurons increasing. Alternatively, we can interpret this as “the distances between each
of the centroids become more uniform”. This is indeed an interesting phenomenon to observe, as one might expect
on an intuitive level for a model that has a better understanding of the data to arrange digits such that digits that
are similar in structure are also closer together in the latent space. This has been observed with more complex
embedding layers in larger neural network architectures employed on more complex data.

On a second look, however, these results seem to make sense. As demonstrated by the input/output visual-
izations in Figures 2.9 to 2.11, there is no meaningful difference between the predictive capability of autoencoders
with 50, 100, and 200 neurons, although autoencoders with a larger number of neurons have a lower training loss.
That is, the efficiency of a representation does not necessarily imply its performance. Autoencoders with a lower
number of neurons work with a limited space, and thus they must find more efficient (but not necessarily accurate)
representations by “merging together” similar digits. An analysis of Figures 3.1 through 3.8 show a visible “stan-
dardization” of the distances between clusters, whereas there is much more overlap in autoencoders with smaller
bottleneck neurons, and hence more variation in distances between centroids and a higher standard deviation. In
many ways, this inter-centroid phenomenon confirms prior intra-cluster analysis.

6 Summary of Findings

In Section 2.3. Specific Formulation of Inquiry, we outlined two major paths of inquiry – to explore the intra-
cluster and intercluster relationships changed in the latent space as the number of neurons in the bottleneck of the
autoencoder increased.

Using average distance from the mean as an intracluster measure of spread, we found that the spread of the
entire latent space decreased as the number of neurons in the bottleneck increased, eventually plateauing at around
50 neurons. When analyzing the spread of digit clusters, we found in a deep double descent pattern in all but two
of the digits, suggesting that the spread of the digit clusters may be correlated with the error of the representation
in a supervised testing. This connection provides an interesting and novel link between the deep double descent
phenomenon and unsupervised contexts.

14

Using the distance between centroids as an intercluster measure of spread, we found that the distribution of
distances between digit clusters was roughly normally distributed. We found that the relationship between the
bottleneck size and the mean distance centroids resembled that of the deep double descent; these results suggested
that the mean distance of centroids may not be a good metric for evaluating a model’s “understanding”. We found
that the standard deviation of distances between clusters decreases as the number of neurons in the bottleneck
increases. This suggests that an increasing number of neurons puts less pressure on the autoencoder to develop
extreme efficient representations and allows it to generate more uniform, or standardized, separations between digit
clusters.

7 Further Inquiry

There are multiple paths of further inquiry and research that these results suggest.

• This paper only analyzed the behavior of eight autoencoders of different sizes. As such, our findings have had
to generalize a fair bit across the behavior of these eight autoencoders. Further inquiry would explore if the
findings of this paper hold up given more data for different bottleneck sizes.

• Each of the autoencoders were initialized randomly; this comes at the cost of potentially running into local
minima or other problems by chance, as was demonstrated by the failed 2-neuron autoencoder in Figure
2.3. A follow-up would confirm if the findings in this paper hold up under multiple trials for each n-neuron
bottleneck autoencoder. Such further inquiry would need to analyze the spread of results for autoencoders
of one size; e.g. perhaps multiple trials for an autoencoder of bottleneck size 200 neurons yield less varied
results for spread (distance from mean) than multiple trials for an autoencoder of bottleneck size 3 neurons.

• This paper used t-SNE dimensionality reduced data into two dimensions. Further inquiry would explore
impacts of the Curse of Dimensionality and using simpler statistical measurements on complex manifolds on
the results derived about the latent space. Such inquiry would provide a concrete grounding in the importance
(or unimportance, perhaps) of the dimensionality reduction step.

• In Section 5, we analyzed the distance between centroids using the mean distance between centroids. How-
ever, this does not examine specific relationships between specific centroids, like between 4 and 9, which we
have observed are perhaps the most difficult pair of digits for autoencoders to separate. Further inquiry
would explore if it is possible to quantify how “difficult” a pair of digits are to separate by analyzing latent
representation clusters.

• This paper used the MNIST dataset, which is a simple dataset, both in its size, image resolution, and number
of classes. Further inquiry would repeat the steps in this paper on a much larger dataset, like ImageNet or
CIFAR-100, and explore differences and similarities in findings based on the size of the dataset.

8 Code Reproduction Links

• Reproducing encoded data from the MNIST dataset.

• Reproducing t-SNE visualizations of latent space data.

• Reproducing PCA visualizations of latent space data.

• Reproducing intracluster and intercluster findings and visualizations.

15

https://www.kaggle.com/washingtongold/generating-autoencoded-mnist-data
https://www.kaggle.com/washingtongold/math-project-4-analysis?scriptVersionId=59555347
https://www.kaggle.com/washingtongold/math-project-4-analysis?scriptVersionId=59613067
https://www.kaggle.com/washingtongold/working-with-t-sne-encoded-data?scriptVersionId=60044278

	Introduction
	Attaining Data
	Process
	Results
	Specific Formulation of Inquiry

	Visual Analysis of the Latent Space
	Analyzing Spread of the Latent Space
	Spread Without Class Distinction
	Spread With Class Distinction

	Analyzing Distance Between Centroids
	Summary of Findings
	Further Inquiry
	Code Reproduction Links

